
IEEJ International Workshop on Sensing, Actuation, Motion Control, and Optimization

FingerVision for Tactile Behaviors, Manipulation,

and Haptic Feedback Teleoperation

Akihiko Yamaguchi∗a) Non-member

This paper introduces a vision-based tactile sensor FingerVision in order to attract haptics researchers to use Fin-

gerVision. We describe the overview of FingerVision and its applications including tactile behaviors and robot

manipulation. We also discuss the use of FingerVision for teleoperation with haptic feedback under learning-from-

demonstration context.
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1. Introduction

This paper introduces a vision-based tactile sensor Fin-

gerVision and its applications in order to attract haptics re-

searchers to use FingerVision. FingerVision was proposed

in (1) by Yamaguchi and Atkeson. Its concept is combining

proximity vision and tactile sensing. Unlike other vision-

based tactile sensors such as (2)∼(15), the cameras inside

FingerVision can see the outside of the sensor through the

skin, which increases the sensing modality. The structure of

FingerVision is simple, consisting of elastic and transparent

skin, frame, and cameras. Markers are attached on the skin

surface for detecting skin deformation. The features of Fin-

gerVision are summarized as follows:

(1) Multimodal: It can sense force distribution, slip, object

pose, texture, and other information obtained from prox-

imity vision (computer vision for nearby objects). The

remarks are that: (1.1) Slip can be detected regardless the

reactive force from objects. It can sense slippage even

when the object is too light to sense force (e.g. origami

crane). (1.2) Cameras can sense objects before collision.

With this feature, we can create safe interactive robots

that are aware of nearby humans.

(2) Easy to manufacture: Because of its simple structure,

its fabrication is easy.

(3) Low cost: The most expensive component is the cam-

era. Other components are inexpensive.

(4) Physically strong: External force applies to the skin and

frame, and does not reach the camera. Thus it is physi-

cally strong. Even if the skin is damaged, replacing it is

inexpensive.

(5) The sensing elements (cameras) do not have to cover the

whole surface: Using wide-angle lenses (fisheye lenses),

we can make the camera allocations sparse.

(6) Processing software could be common, which enables

efficient development.

(7) Sensor parameters are adjustable: We can adjust the

dynamic range of force (hardness and thickness of the
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Fig. 1. Conceptual design of FingerVision (a, b) and its
prototype installed on Baxter electric parallel gripper (c).

skin), size (small cameras miniaturize the sensor size),

spatial resolution (camera resolution, marker allocation,

etc.), and temporal resolution (high speed cameras for

high FPS).

(8) Other types of sensors can be used: For example ther-

mal cameras.

In (16), we demonstrated that FingerVision makes it easy

to program some tactile behaviors such as gentle grasp, hold-

ing without slip, natural handover, and in-hand manipulation.

Especially because of its sensitivity of slip, it was possible to

make a grasp adaptive controller which adjusts the grasp to

avoid slip during picking up an object (17). With this controller,

the robot with a parallel gripper where the FingerVision sen-

sors are installed could pick up a range of deformable and

fragile objects, such as vegetables, fruits, origami arts, raw

eggs, and potato chips.

We encourage many researchers reproduce FingerVision

for their own devices. For this purpose, FingerVision is open

source (18).

In the rest of this paper, we summarize the sensing tech-

nology of FingerVision, its applications to tactile behaviors

and manipulation, and we discuss the use of FingerVision

for teleoperation with haptic feedback under learning-from-

demonstration context.

2. FingerVision

FingerVision is a vision-based tactile sensor consisting of

elastic and transparent skin made with silicone, frame made

with 3D printed support and acrylic, and cameras. Fig. 1

shows the conceptual structure. Markers are placed on the

surface of the skin for detecting skin deformation to estimate
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Fig. 2. Example of sensing when pushing the sensor by
finger. Force distribution, slip, and object (finger) are
detected.

external force distribution. In the prototype of FingerVision

(Fig. 1(c)), we use Silicones Inc. XP-565 that has A-16 Shore

hardness as silicone, black micro plastic beads of 1 mm di-

ameter for markers, and ELP Co. USBFHD01M-L180 USB

camera with fisheye lens. The thickness of silicone is 4 mm,

the markers are allocated on 5 mm grid, and the thickness

of acrylic is 2 mm. The camera stream is taken at 320x240,

30-60 FPS.

The raw measurement from FingerVision is image se-

quence as usual cameras. We use several different computer

vision methods for estimating force distribution, slip, and ob-

ject pose. Estimating force distribution is achieved by track-

ing the markers whose movement tells us the deformation of

the silicone skin. Estimating slip and object pose are done

by directly analyzing the camera stream. We refer to such

computer vision for nearby objects as proximity vision.

2.1 Force Estimation By Marker Tracking For

tracking the markers placed on the surface of the elastic

skin, we use a blob tracking method. It consists of two

processes: calibration to detect initial marker positions, and

tracking the marker displacements. In the both processes,

the camera image is rectified for compensating the distor-

tion caused by fisheye lens, and then converted to a black

and white image by thresholding black color as the mark-

ers are black. In the calibration, we cover the sensor with

white sheet in order to avoid detecting noise from back-

ground. A blob detection method implemented in OpenCV

(cv::SimpleBlobDetector) is used. The calibration takes

less than 1 second. Marker tracking is done independently

per marker. We assume a small region around a marker at its

previous position, and apply the same blob detection method

of OpenCV. If the marker movement is unexpectedly large,

we reject the result since it would be noise. We also com-

pare the size of blob to distinguish the noise. The obtained

marker displacements are converted to 3-dimensional force

estimates. Refer to (16) for the details of force estimation.

Fig. 2 shows an example of marker tracking where the red

bars highlight the marker movement.

2.2 Proximity Vision We directly process the cam-

era stream for proximity vision. Although we could use

many of computer vision algorithms for proximity vision

which would increase the sensing modality, we implement

two algorithms: nearby-object detection and slip estimation.

The object detection is useful to estimate the pose (posi-

tion and orientation) and size of grasped object or nearby

object, and is also used to distinguish the background and

object movement. Slip is estimated by a background sub-

traction method with the mask of detected object. We also

considered optical flow, but background subtraction was bet-

Fig. 3. Baxter system with two grippers where Fin-
gerVision is installed on each finger. Raspberry Pi is used
to stream the camera data to Ethernet network.

Fig. 5. Examples of grasp adaptation control.

ter in some cases where the object does not have sufficient

texture. In the calibration stage, we build the background

model. An object model is we adaptively and dynamically

constructed. Both the background and the object models

are represented as color histograms. As the background

subtraction method, we use an implementation of OpenCV

(cv::BackgroundSubtractorMOG2). With this implemen-

tation, the strength of slip at each pixel is estimated which

does not have the direction of slip. Refer to (16) for the de-

tails of slip and object detection. Fig. 2 shows an example of

detecting nearby-object and slip.

3. Tactile Behaviors and Manipulation

We briefly describe the tactile behaviors and manipulation

with FingerVision to demonstrate the variety of its applica-

tions. Here we assume that the FingerVision sensors are in-

stalled on parallel grippers mounted on a dual-arm robot Bax-

ter (Fig. 3). As the gripper, we use a Baxter electric parallel

gripper and a Robotiq 2-finger adaptive robot gripper-85. We

designed 3D printed frames for each gripper. Fig. 4 shows an

illustration of the tactile behaviors.

Gentle Grasp The purpose is grasping an object with

a small force. We use the force estimation to stop closing the
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Fig. 4. Tactile behaviors.

gripper.

Holding The purpose is controlling the grasp (gripper

width) to avoid slip when holding an object. The strategy is

simple: closing the gripper when slip is detected.

Grasp Adaptation In general, the goal of grasping is

eliminating slippage of holding object during lifting up. We

implement this behavior by combining the lifting up motion

and the holding behavior (slip avoidance control) mentioned

above. More concretely, we repeat until the object is lifted

up: moving the object upward slowly; if slippage is detected,

moving the object to the initial height and closing the gripper

slightly. Refer to (17) for more details of grasp adaptation

control.

Handover The purpose is naturally passing an object

to a human. FingerVision is used as a trigger to open the

gripper. Both force estimation and slip detection are used as

the trigger: if one of them is detected, the gripper is opened.

Combining two modality increases its applicability. When

grasping an object strongly, force tends to be detected. When

grasping a light weight object such as an origami crane, slip

tends to be detected.

Tacking Object The purpose is tracking an object be-

tween the fingers. We control the robot arm so that the target

object locates at the center of the fingers. We use the ob-

ject detection and the pose estimation. The position on the

camera image plane is estimated accurately; we control the

robot arm to center the object on the image. For controlling

the height of the object from the camera, we use the area of

the object on the image. From two FingerVision sensors on

two fingers, we obtain two estimates of object areas on the

images. By controlling the robot to equalize the areas, the

object locates at the center of the fingers.

Tracking Force The purpose is operating the robot by

pushing slightly. We use the force estimate and control the

robot towards the pushed direction. We also use the object

detection as a trigger to activate the control, which increases

the safety since the robot does not move when no object is be-

tween the fingers. We compared two variations: one uses the

force estimate of Baxter (estimation from joint torque sen-

sors), and the other combines the force estimate of Baxter

and FingerVision. In the latter case, the robot was operated

with smaller force.

In-hand Manipulation The purpose is changing the

orientation of a grasped object without releasing it. This

is achieved by repeatedly relaxing and tightening the grip-

per based on the slip estimate until the target orientation is

achieved.

More details of the gentle grasp, holding, handover,

and in-hand manipulation are described in (16). Its ac-

companying video is available on https://youtu.be/

L-YbxcyRghQ/ Fig. 5 shows the examples of grasp adapta-

tion control. Its video is available on https://youtu.be/

0sAkec5bpu4 and https://youtu.be/uy32tO9e7O4 The

video of tacking object is available on https://youtu.be/

TAA4YJqEOqg The video of tracking force is available on

https://youtu.be/FQbNV549BQU

4. Discussion: FingerVision for Teleoperation
with Haptic Feedback

Haptic feedback teleoperation (e.g. (19)) is an important

technology for telesurgery. It should be also useful in other

robot manipulations. Manipulation tasks in everyday ac-

tivity are still difficult problems of robotics. A promising

approach to enable robots performing everyday activity is

learning from human demonstrations (20). However transfer-

ring human skills is not easy due to the difference of em-

bodiments between humans and robots. Kinesthetic teach-

ing (21)∼(23) makes demonstrations easier but the issues are the

lack of haptic feedback and the difficulty of performing a task

by moving the robot body. Teleoperation was used in demon-

strating manipulation skills (24) (25). In (24), it was referred to

as teleoperation training where manipulation of cloth was

demonstrated to a robot by teleoperating with a head mount

display. In (25), manipulation skills of dexterous robot hands

were demonstrated to a simulated robot hand by teleoperating

with Mujoco HAPTIX system (26), CyberGlove III, and HTC

vive tracker. However haptic feedback was not used in these

work.

Teleoperating a robot without haptic feedback is difficult

especially when there is slippage between the robot hand and

the manipulated object. In the experiments of teleoperating

the Baxter robot with a joy stick to peel a banana (Fig. 6), we

found that the teleoperation is very difficult since the operator

could not sense the state of the grasp. As the consequence,
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Fig. 6. Teleoperation of peeling banana with Baxter.
Watch: https://youtu.be/rEeixPBd3hc

the banana slipped often in the grippers which caused many

manipulation failures. This could be improved by installing

tactile sensors on the robot grippers and activating the hold-

ing strategy to avoid slippage. However such a control does

not work when the operator wants to produce slippage on

purpose; for example, washing a dish with hand.

Haptic feedback teleoperation for demonstration will in-

crease the variety of teachable tasks and performance of skills

(e.g. speed of motions). With a sophisticated haptic feed-

back, the teleoperators of robots can demonstrate skills as

if moving their own bodies, which is easier than kinesthetic

teaching. Example tasks are peeling banana, mixing stew,

other cooking tasks, washing dishes with hands, and con-

struction of PC (especially handling cables).

4.1 FingerVision for Haptic Feedback FingerVision

provides multimodal tactile sensation to robot hands. It could

be a useful sensing device to be used in haptic feedback tele-

operation.

FingerVision perceives 3-dimensional force distribution

and non-directional slip distribution. Humans can sense these

modality with their skin, but the sensitivities of FingerVi-

sion and human skins are different. FingerVision is sensitive

to slippage regardless the object weight; actually it senses

movement even when the object is not contacting with the

finger. Moreover, FingerVision has other modality such as a

pose, an area, and texture of nearby object, which human skin

cannot perceive. Thus, the research question is how to create

haptic feedback from the sensed data of FingerVision? Ide-

ally we will need a haptic device that gives multimodal sen-

sation with high resolution. Another question is that: can hu-

mans adapt to use such haptic feedback to teleoperate robots

to manipulate objects better?

It will be also necessary to improve FingerVision for haptic

feedback teleoperation purpose. The current qualities of spa-

tial resolution, dynamic range of force, precision, etc. will

not be enough in some scenarios.

5. Summary

We described a vision-based tactile sensor FingerVision,

and its applications to tactile behaviors and manipulation. We

also discussed the use of FingerVision for teleoperation with

haptic feedback.
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